Autonomous Perceptron Neural Network Inspired from Quantum computing
نویسندگان
چکیده
Recently with the rapid development of technology, there are a lot of applications require to achieve low-cost learning in order to accomplish inexpensive computation. However the known computational power of classical artificial neural networks (CANN), they are not capable to provide low-cost learning due to many reasons such as linearity, complexity of architecture, etc. In contrast, quantum neural networks (QNN) may be representing a good computational alternate to CANN, based on the computational power of quantum bit (qubit) over the classical bit. In this paper, a new algorithm of quantum perceptron neural network based only on one neuron is introduced to overcome some limitations of the classical perceptron neural networks. The proposed algorithm is capable to construct its own set of activation operators that enough to accomplish the learning process in a limited number of iterations and, consequently, reduces the cost of computation. For evaluation purpose, we utilize the proposed algorithm to solve five problems using real and artificial data. It is shown throughout the paper that promising results are provided and compared favorably with other reported algorithms keyword: Artificial neural networks and Quantum computing and Quantum neural networks
منابع مشابه
Integrated Feature and Parameter Optimization for an Evolving Spiking Neural Network
This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist system, in which the features and parameters of an evolving spiking neural network are optimized together with the use of a quantum-inspired evolutionary algorithm. We propose here a novel optimization method that uses different representations to explore the two search spaces: A binary repres...
متن کاملSuperpositional Quantum Network Topologies
We introduce superposition-based quantum networks composed of (i) the classical perceptron model of multilayered, feedforward neural networks and (ii) the algebraic model of evolving reticular quantum structures as described in quantum gravity. The main feature of this model is moving from particular neural topologies to a quantum metastructure which embodies many differing topological patterns...
متن کاملQuantum perceptron over a field and neural network architecture selection in a quantum computer
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a lear...
متن کاملAutonomous Quantum Perceptron Neural Network
Abstract:Recently, with the rapid development of technology, there are a lot of applications require to achieve low-cost learning. However the computational power of classical artificial neural networks, they are not capable to provide low-cost learning. In contrast, quantum neural networks may be representing a good computational alternate to classical neural network approaches, based on the c...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.00556 شماره
صفحات -
تاریخ انتشار 2015